Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1		Attempt any FIVE of the following:		(10)
	a) Ans.	Define Statics and Dynamics. Statics is the branch of applied mechanics which deals with forces and their action on bodies at rest.	1	
		Dynamics is the branch of applied mechanics which deals with forces and their action on bodies in motion.	1	2
	b) Ans.	State ideal machine and write it's any two characteristics. Ideal Machine is the machine whose efficiency is 100% and in which friction is zero.	1	
		Following are the characteristics of an ideal machine: (1) Efficiency of the machine is 100%. (2) Output = Input (3) Machine is free from frictional losses. (4) Mechanical Advantage = Velocity Ratio	$\begin{gathered} 1 / 2 \\ \text { each } \\ \text { (any } \\ \text { two) } \end{gathered}$	2
	c) Ans.	State law of parallelogram of forces. Law of Parallelogram of force states, "If two forces acting at and away from point be represented in magnitude and direction by the two adjacent sides of parallelogram, then the diagonal of the parallelogram passing through the point of intersection of the two forces, represents the resultant in magnitude and direction".	2	2

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	d) Ans.	State Lami's theorem. Lami's theorem states that, if three forces acting at a point on a body keep it at rest, then each force is proportional to the sin of the angle between the other two forces. As per Lami's Theorem $\frac{\mathrm{F}_{1}}{\sin \alpha}=\frac{\mathrm{F}_{2}}{\sin \beta}=\frac{\mathrm{F}_{3}}{\sin \gamma}$	1	2
	e) Ans.	Define coefficient of friction. Coefficient of friction is the ratio of limiting friction (F) to the normal reaction (R) at the surface of contact. $F \propto R$ $\begin{aligned} & \mathrm{F}=\mu \mathrm{R} \\ & \mu=\frac{\mathrm{F}}{\mathrm{R}} \end{aligned}$	2	2
	f) Ans.	Define centroid and centre of grayity. Centroid: It is defined as the point through which the entire area of a plane figure is assumed to act, for all positions of the lamina. e. g. Triangle, Square. Centre of Gravity: It is defined as the point through which the whole weight of the body is assumed to act, irrespective of the position of a body. e.g. Cone, Cylinder.	1 1	2
	g) Ans.	Write analytical conditions of equilibrium for concurrent force system. 1) $\Sigma \mathrm{Fx}=0$ i. e. Algebric sum of all the forces along X -axis must be equal to zero. 2) $\Sigma \mathrm{Fy}=0$ i. e. Algebric sum of all the forces along Y -axis must be equal to zero.	1	2
	h) Ans.	Define force and state its S.I unit. Force: It is an external agency either push or pulls which changes or tends to change the state of rest or of uniform motion of a body, upon which it acts. S. I. Unit of force - Newton (N)	1 1	2

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	a)	OR - Coplanar Non-concurrent force system: The force system in which forces lies on the same plane but meet at different points are known as Coplanar Concurrent force system. OR - Coplanar parallel force system: (i) Like parallel force system: The force system in which forces lies on the same plane and are parallel to each other acting in same direction are known as Coplanar Like parallel force system. (ii) Unlike parallel force system: The force system in which forces lies on the same plane and are parallel to each other but acting in opposite direction are known as Coplanar Unlike parallel force system.		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks			
Q. 2	a)	OR - Non-coplanar concurrent force system: The force system in which forces lies in different planes but meet at a point are known as Non-coplanar Concurrent force system. - Non-coplanar parallel force system: The force system in which forces lies in different planes but are parallel to each other are known as Non-coplanar parallel force system. - General force system: The force system in which forces act in different planes and they do not possess one single point of concurrency are known as General force system. (Note : Classification of force system-2 Marks, any one force system details - 1 Mark and sketch - 1 Mark)					
		OUR-CENTERS: KALYAN \| DOMBIVLI	THANE	NERUL	DADAR Contact - 9136008228		Page \| 5

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	a) Ans.			
		$\begin{aligned} \sum \mathrm{Fx} & =+\left(50 \times \cos 30^{\circ}\right)-\left(80 \times \cos 75^{\circ}\right)-(100)+\left(60 \times \cos 45^{\circ}\right) \\ & =-34.98 \mathrm{~N} \end{aligned}$	1/2	
		$\begin{aligned} \sum \mathrm{Fy} & =+\left(50 \times \sin 30^{\circ}\right)+\left(80 \times \sin 75^{\circ}\right)-\left(60 \times \sin 45^{\circ}\right) \\ & =+59.85 \mathrm{~N} \end{aligned}$	1/2	
		2) Magnitude of		
		$\mathrm{R}=\sqrt{\left(\sum \mathrm{Fx}\right)^{2}+\left(\sum \mathrm{Fy}\right)^{2}}=\sqrt{(34.98)^{2}+(59.85)^{2}}$	1	
		$\mathrm{R}=69.32 \mathrm{~N}$		
		3) Since $\sum F x$ is $-v e \& \sum F y$ is $+v e$,		
		R lies in Second quadrant	1	
		4) Position of Resultant $\theta=\tan ^{-1}\left\|\frac{\sum \mathrm{Fy}}{\sum \mathrm{Fx}}\right\|=\tan ^{-1}\left\|\frac{34.98}{59.85}\right\|$ $\theta=59.69^{\circ}$ with horizontal	1	4
	b) Ans.	State triangle law of forces with sketch and state it's use. Triangle law of forces: It states that, " if forces acting simultaneously on a particle be represented in magnitude and direction by two sides of a triangle taken in order, then their resultant may be represented in magnitude and direction by the third side of the triangle taken in opposite order." e.g. - Let, P and Q are forces acting at point O. Using Bow's notation, $P=A B$ and $Q=B C$. Using suitable scale draw line 'ab' parallel to $A B$	2	
		(a) (b)	1	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	d)	Using, eqn. (iii) $\begin{aligned} & \mathrm{P}=(0.04) \mathrm{W}+16 \mathrm{~N} \\ & \mathrm{P}=(0.04 \times 3000)+16 \\ & \mathrm{P}=136 \mathrm{~N} \end{aligned}$	1	4
Q. 4		Attempt any THREE of the following:		(12)
	a)	Calculate moment of all forces about point ' A ' for the force system as shown in Fig. No. 2.		
	Ans.	Taking moment of all forces about point A $\begin{aligned} & \mathrm{M}_{\mathrm{A}}=(10 \times 0)+(30 \times 0)-(15 \times 3)+(30 \times 2)-(20 \times 2) \\ & \mathrm{M}_{\mathrm{A}}=0+0-45+60-40 \\ & \mathrm{M}_{\mathrm{A}}=-25 \mathrm{kN}-\mathrm{m} \\ & \mathrm{M}_{\mathrm{A}}=25 \mathrm{kN}-\mathrm{m} \text { (Anti-clockwise) } \end{aligned}$	2	4
	c)	Calculate the reactions offered by planes. Refer Fig. No. 3. A sphere weighs 500 N is supported by two planes, one plane is vertical and other is inclined at 60° to the horizontal.		
		Fig. No. 3	$\begin{gathered} 1 \\ (\text { FBD }) \end{gathered}$	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4	d)	Calculate coefficient of friction if a block weighing 600 N resting on a rough horizontal plane can be moved by a force of 150 N applied at an angle of 60° with the horizontal.		
	Ans.	Motion		
			1	
		For limiting equilibrium $\begin{aligned} & \Sigma \mathrm{Fy}=0 \quad(1+\mathbf{v e}, \downarrow-\mathbf{v e}) \\ & +\mathrm{R}+(150 \times \sin 60)-600=0 \\ & \mathrm{R}=470.09 \mathrm{~N} \end{aligned}$	1	
		$\begin{aligned} & \Sigma \mathrm{Fx}=0 \quad(\rightarrow+\mathbf{v e}, \leftarrow-\mathbf{v e}) \\ & +(150 \times \cos 60)-\mathrm{F}=0 \\ & 75=\mu \times R \\ & 75=\mu \times 470.09 \end{aligned}$	1	
		$\begin{gathered} \mu=\frac{75}{470.09} \\ \mu=0.16 \end{gathered}$	1	4
	e)	Calculate tension in the strings $A B$ and $B C$ if a weight of 200 N is attached by two strings as shown in Fig. No, 5.		
		Fig. No. 5 FBD	$\begin{gathered} 1 \\ (\text { FBD }) \end{gathered}$	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	b) Ans.	Locate the centroid of shaded area as shown in Fig. No. 9 with respect to origin. Fig. No. 9 1) Let, Fig. 1 - Quarter circle and Fig. 2 - Triangle Area Calculation $\begin{aligned} & \mathrm{a}_{1}=\frac{\pi \times \mathrm{r}^{2}}{4}=\frac{\pi \times(100)^{4}}{4}=7853.98 \mathrm{~mm}^{2} \\ & \mathrm{a}_{2}=\frac{1}{2} \times \mathrm{b} \times \mathrm{h}=\frac{1}{2} \times 100 \times 100=5000 \mathrm{~mm}^{2} \\ & \mathrm{a}=\mathrm{a}_{1}-\mathrm{a}_{2}=2853.98 \mathrm{~mm}^{2} \end{aligned}$ 2) x calculation $\begin{aligned} & \mathrm{x}_{1}=\frac{4 \times \mathrm{r}}{3 \times \pi}=\frac{4 \times 100}{3 \times \pi}=42.44 \mathrm{~mm} \\ & \mathrm{x}_{2}=\frac{\mathrm{b}}{3}=\frac{100}{3}=33.33 \mathrm{~mm} \\ & \overline{\mathrm{x}}=\frac{a_{1} \mathrm{x}_{1}-a_{2} \mathrm{x}_{2}}{\mathrm{a}}=\frac{(7853.98 \times 42.44)-(5000 \times 33.33)}{2853.98}=58.39 \mathrm{~mm} \\ & \overline{\mathrm{x}}=58.39 \mathrm{~mm} \text { from } \mathrm{y} \text { axis } \end{aligned}$ 3) \bar{y} calculation $\begin{aligned} & y_{1}=\frac{4 \times r}{3 \times \pi}=\frac{4 \times 100}{3 \times \pi}=42.44 \mathrm{~mm} \\ & y_{2}=\frac{b}{3}=\frac{100}{3}=33.33 \mathrm{~mm} \end{aligned}$	1	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	c)	Let, Fig. $1=$ Cone and Fig. $2=$ Hemisphere (1) Volume Calculation $\begin{aligned} \mathrm{V}_{1} & =\frac{1}{3} \times \pi \times \mathrm{R}^{2} \times \mathrm{h} \\ & =\frac{1}{3} \times \pi \times 50^{2} \times 200 \\ & =(166666.67 \times \pi) \mathrm{mm}^{3} \\ \mathrm{~V}_{2} & =\frac{2}{3} \times \pi \times \mathrm{R}^{3} \\ & =\frac{2}{3} \times \pi \times 50^{3} \\ & =(83333.33 \times \pi) \mathrm{mm}^{3} \\ \mathrm{~V} & =\mathrm{V}_{1}+\mathrm{V}_{2} \\ & =(166666.67 \times \pi)+(83333.33 \times \pi) \\ & =(250000 \times \pi) \mathrm{mm}^{3} \end{aligned}$ (2) x calculation As figure is symmetric about y axis, $\mathrm{x}=\mathrm{R}=50 \mathrm{~mm} \text { form } \mathrm{y} \text { axis }$ (3) y calculation $\begin{aligned} & y_{1}=\left(\mathrm{h}-\frac{\mathrm{h}}{4}\right)=\left(200-\frac{200}{4}\right)=150 \mathrm{~mm} \\ & \mathrm{y}_{2}=\mathrm{h}+\left(\frac{3 \times \mathrm{R}}{8}\right)=200+\left(\frac{3 \times 50}{8}\right)=218.75 \mathrm{~mm} \\ & \bar{y}=\frac{V_{1} y_{1}+V_{2} y_{2}}{\mathrm{~V}}=\frac{[(166666.67 \times \pi) \times 150]+[(83333.33 \times \pi) \times 218.75]}{(250000 \times \pi)} \end{aligned}$ $\bar{y}=172.92 \mathrm{~mm} \text { form } \mathrm{x} \text { axis }$	1 1 1 1 1	6

